The KAMWELD heating device can be used to successfully bend various thermoplastic materials including—PVC, CPVC, PVC Blends (Kydex types), Polypropylene, Polystyrene, Polycarbonate and ABS.

Heating Tool For Angle Forming And Bending Of Thermoplastics
The use of heated tools for bending and angle forming has a decided advantage in fabrication. Assemblies are easily formed and larger pieces are handled by the heated tool technique resulting in cost reduction for large assemblies. Specially designed forming and bending heaters are available to heat a sheet of plastic for bending or forming into any desired angle. The Kamweld heating device is an excellent type of heating tool for forming all angle bends.

Method of Making Angle Bends
The heating device consists of two rectangular aluminum heating bars—a top section and a bottom section. These bars are electrically heated by metal encased elements that assure long element life. Each heater bar has two heating faces: 1/2” and 1” to accommodate sheet material gauges from 1/16” thru 1/2”. Each bar has two insulated handles, 10 feet of two wire electrical cord, and plug. The top heating section has a bar with long handles and short steel guide clips mounted on an aluminum base.

Using Kamweld’s Bending Device to Make Crisp Bends
There are two different steps in bending plastics. The first step is to heat uniformly the area to be bent. This is easily accomplished with the KAMWELD Heating Device. The second step is forming the heated sheet material into any desired angle. We recommend the use of metal or wooden guides. The heated plastic is held in the desired position until sufficiently cooled, and the bend is complete. You can prepare plastic sheet material for single or double bends at the same time.

Single Bend Operation
1. Place heating bar sections on a flat, level bench.
2. Connect to a standard 115 volt A.C. outlet. Allow approximately ten minutes for warm-up time.
3. Mark the exact position of areas to be heated, using a marking crayon.
4. Select a heating face on each bar according to specification chart. The 1/2" face is referred to as Side A. The 1” face is referred to as Side B.
5. The selected heating surface of the bottom section should be facing up. The sheet is then placed on the bar with the crayon marks centered.
6. Use supporting angles to keep the plastic sheet level during the heating period.
7. Place the top heating bar with the selected heating surface on top of the plastic sheet and insert between the high guide clips.
8. Leave plastic sheet between bars for a period of time as shown in specification chart. You can test the sheet during heating time by holding one end of the sheet and flexing the other end. When it flexes easily, it is sufficiently heated for bending.
9. Remove top bar and place it back into the clips on its base. The sheet is now ready for bending.
Bending

There are various methods of bending, depending on the gauge and type of the material. Sheet metal brakes or any other positive forms can be used to make bends. However, you can place the sheet with the heated area over the edge of a straight bench and hold it at the desired angle until the heated area is sufficiently cooled. You can make your own forms of either metal or wood for various bends as needed. Metal is preferable because it speeds up the cooling.

Double Bend Operation

Heat sheet material up to 1/2" thick for double bends as close as 1" to any desired measurement.

1. Follow instructions as shown in steps 1 through 4 (Single Bend Operation).
2. Clamp one heater section to bench with spring clamp or C-clamp.
3. Place other section at desired measurements and secure with clamp.
4. Place plastic sheet on top of heating bars and center the crayon marks.
5. Leave sheet on the heater bars for the time indicated in specification chart.
6. The plastic sheet is now ready for bending.

Bending

Use two steel angles, clamped to the bench (at the desired measurements) to prevent spreading. The heated sheet is placed between the two angles, pushed down, and held until sufficiently cooled. Cool off time is 1 to 3 minutes, depending on the gauge of the material.

For angles other than 90° we recommend use of suitable wooden blocks or steel angles. You can also make bends that are not parallel simply by placing the heating device and the forms into corresponding positions.

Extra Wide Bends

This device permits heating of an area up to 2" wide by resting both bars sections with the 1" faces up on the bottom section base with one bar inside the guide clips, and the other bar is alongside on the extended aluminum pads.
SPECIFICATION CHART PVC Type I & II

* Actual Times May Vary

Heating of Polyethylene and Polypropylene

These types of plastics can be satisfactorily heated by following these simple instructions.

1. Follow instructions as shown in steps 1 through 4 (Single Bend Operation).
2. Apply a thin coat of vegetable oil on the heating bars for each heating operation. Note: The heating bars should be cleaned with fine steel wool after use daily, to remove irregular build-up, caused by the vegetable oil.
3. Use only the bottom heater section for a time duration as shown in specification chart.
4. The selected heating surface of the bottom section should be facing up. The sheet is then placed on the bar with the crayon marks centered.
5. Place a smooth wooden strip across the entire area that is to be heated and place a weight on top or hold it down. The use of the wooden strip concentrates the heat in that area and, at the same time, assures that the plastic sheet rests flat and evenly against the heating bar. Material of this type tends to bow during the heating period.

Important: The inside radius of the bend requires more heat than the outside radius.

6. When the sheet shows signs of softening on the bottom side, remove the wooden strip and place the other heater bar on top of the sheet.
7. Leave the sheet in this position for the period of time shown in specification chart.
8. The sheet is not ready for bending. It will be softer on the bottom side and this side is the inside radius of the bend.

<table>
<thead>
<tr>
<th>Sheet Gauge</th>
<th>Single Bends</th>
<th>Double Bends</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heating Face of Bottom Section</td>
<td>Heating Face of Top Section</td>
</tr>
<tr>
<td>1/8”</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>3/16”</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1/4”</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>3/8”</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>
The charts show the approximate heating times required for a 48” wide sheet. Narrow sheets should always be placed in the center of the heating device to maintain balance of top heating bar for uniform heat. The exact heating time will depend upon the variations of the materials and gauges as well as the electrical voltage supply. It is recommended that test bends be made to determine the exact heating time needed for best results, especially for other thermoplastic materials that require more or less heat for forming than materials shown in the charts.

Heavier gauge sheet not shown on the charts can be heated on top of the bars and turned over once or twice for even heat penetration. Covering the heated area with a wooden strip can reduce heating time.

Typical applications for localized heating would be in the fabrication of angles, channels, tank corner bends, and square or rectangular duct, as well as hoods and sinks. A formed corner is stronger than a fabricated corner.